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1 Introduction

In this manuscript we will try to derive conservative forms of the thermodynamic equation in the case
of a complex micro-physical scheme including the ice-phase (i.e. we consider dry air (qa), water vapour
(qv), liquid water (ql), rain water (qr), ice (qi) and snow (qs)). Liquid water and ice will remain in the
particle and only rain water and snow will precipitate. This precipitation is represented by the partial
mass flux Pl + Pi = ρrwr + ρsws with respect to the barycentre, where wr and ws are the partial
vertical velocities of rain water and snow with respect to the barycentre. Next to this ‘real’ flux we
also have the following pseudo fluxes: P ′

l representing the integral of the transfer between vapour and
liquid water due to condensation/evaporation; P ′′

l representing the integral of the transfer between
liquid and rainwater due to auto-conversion; P ′′′

l representing the integral of the transfer between
rainwater and the water vapour due to evaporation of the falling liquid precipitation; P ′

i representing
the integral of the transfer between vapour and ice due to freezing/sublimation; P ′′

i representing the
integral of the transfer between ice and snow due to auto-conversion; P ′′′

i representing the integral of
the transfer between snow and the water vapour due to sublimation of the falling solid precipitation.
So we have (in a star shape):

qi P ′′
i (auto) qs

↓

P ′
i (freez) P ′′′

i (subli) Pi (snow)

qv

P ′
l (cond) P ′′′

l (evapor)

ql P ′′
l (auto) qr

↓

Pl (rain)

Note that the process of melting/freezing between solid and liquid phases is considered such that the
water goes through the vapour phase. Of course this is physically not the case but thermodynamically
it is fully correct.

2 Case δm = 0

In this case any mass flux due to the motion of moisture is compensated by a flux of dry air. Following
Martina’s proposal for the barycentric case (i.e. that only dry air moves to compensate for the mass
fall associated with precipitation), the conservation of the different mass species can be written as:

dqv

dt
= −g

∂

∂p
(P ′

l + P ′
i ) + g

∂

∂p
(P ′′′

l + P ′′′
i ) − g

∂Jqv

∂p
(1)
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dql

dt
= +g

∂P ′
l

∂p
− g

∂P ′′
l

∂p
− g

∂Jql

∂p
(2)

dqr

dt
= +g

∂P ′′
l

∂p
− g

∂P ′′′
l

∂p
− g

∂Pl

∂p
(3)

dqi

dt
= +g

∂P ′
i

∂p
− g

∂P ′′
i

∂p
− g

∂Jqi

∂p
(4)

dqs

dt
= +g

∂P ′′
i

∂p
− g

∂P ′′′
i

∂p
− g

∂Pi

∂p
(5)

dqa

dt
= +g

∂Pl

∂p
+ g

∂Pi

∂p
− g

∂Jqa

∂p
(6)

with Jqv
, Jql

, Jqi
and Jqa

the respective turbulent fluxes such that Jqv
+ Jql

+ Jqi
+ Jqa

= 0. We
can write the local thermodynamic equation (i.e. considering only the physical tendencies, hence the
subscript Φ) as:

cp

(
∂T

∂t

)

Φ

= gLl(T )

(
∂P ′

l

∂p
−

∂P ′′′
l

∂p

)
+ gLi(T )

(
∂P ′

i

∂p
−

∂P ′′′
i

∂p

)
− gPl(cl − cpd)

∂T

∂p
− gPi(ci − cpd)

∂T

∂p

−g
∂Js

∂p
+ gT

(
cpd

∂Jqa

∂p
+ cpv

∂Jqv

∂p
+ cl

∂Jql

∂p
+ ci

∂Jqi

∂p

)
− g

∂Jrad

∂p

where, with respect to the current ARPEGE/ALADIN situation, we introduced in cp the rainwater
and snow fraction of the airmass and in the RHS the usage of latent heat by the corresponding new
phase changes. Js is the thermodynamic diffusive flux which doesn’t contain any contribution of pre-
cipitation and Jrad is the radiative flux. Writing cp as cp = cpdqa + cpvqv + cl(ql + qr) + ci(qi + qs) and
using Ll|i(T ) = Ll|i(T = 0) + (cpv − cl|i)T , we arrive at the following thermodynamic equation:

(
∂

∂t
(cpT )

)

Φ

= g
∂

∂p

[
Ll(T )(P ′

l − P ′′′
l ) − (cpv − cl)T (P ′

l − P ′′′
l ) − (cl − cpd)PlT

+Li(T )(P ′
i − P ′′′

i ) − (cpv − ci)T (P ′
i − P ′′′

i ) − (ci − cpd)PiT − Js − Jrad

]
, (7)

which can be written alternatively

(
∂

∂t
(cpT )

)

Φ

= g
∂

∂p

[
Ll(T = 0)(P ′

l − P ′′′
l ) + Li(T = 0)(P ′

i − P ′′′
i )

−(cl − cpd)PlT − (ci − cpd)PiT − Js − Jrad] .

This thermodynamic equation is a nice conservation law similar to the one without the explicit rain
water and snow part (ARPEGE/ALADIN) but with the additional pseudo fluxes. The auto-conversion
has of course no thermodynamic contribution.

3 Case δm = 1

In this case the precipitation flux is not compensated by dry air any more. Nonetheless, new fluxes
will appear due to the barycentric behaviour. As this case has also some dynamical consequences
(surface pressure changes and so on) we should reverify them as well.

If we take a look at the surface and consider an evaporation flux E, a liquid precipitation flux R
and a solid precipitation flux S (all positive downwards) we have the following advective and diffusive
fluxes:
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δm = 0 δm = 1
advective diffusive advective diffusive

qa 0 −g(E + R + S) g(E + R + S)qa −g(E + R + S)qa

qv 0 gE g(E + R + S)qv gE − g(E + R + S)qv

ql 0 0 g(E + R + S)ql −g(E + R + S)ql

qr 0 gR g(E + R + S)qr gR − g(E + R + S)qr

qi 0 0 g(E + R + S)qi −g(E + R + S)qi

qs 0 gS g(E + R + S)qs gS − g(E + R + S)qs

It is clear that the sum of the diffusive fluxes is in both cases zero and at the surface we have the
advective flux δmg(E + R + S) and there is no total flux of qa only when δm = 1 and it is always the
case for ql and qi. However we do have the problem that there is no continuation of the diffusive fluxes
linked to precipitation in the atmosphere (in eqs. (1-6) and (10-15) there are no fluxes Jqr

and Jqs
),

which gives us a boundary condition problem that may have to be treated separately. One could for
instance have a constant flux throughout the vertical which has a zero divergence, but suggestions are
welcome...

3.1 Continuity equation and consequences

The continuity equation becomes (there are no mass fluxes acting as source terms in the barycentric
case):

∂

∂t

(
∂p

∂η

)
= −∇.

(
~v

∂p

∂η

)
−

∂

∂η

(
η̇
∂p

∂η

)

The vertical velocities at the upper and lower boundaries are:

η = 0 η̇
∂p

∂η
= 0

η = 1 η̇
∂p

∂η
= δmg(E + R + S)

Integrating the continuity equation above over η = 0 → 1 and using the boundary conditions, the
surface pressure tendency can be written as

∂πs

∂t
= −

∫
1

0

∇.

(
~v

∂p

∂η

)
dη − δmg(E + R + S). (8)

Using B(η) as the proportionality factor of the surface pressure for the computation of the pressure
along the vertical in the hybrid pressure-type coordinate system, B ′(η) as its derivative with respect
to the generalised vertical coordinate η and substituting

∂

∂t

(
∂p

∂η

)
= B′(η)

∂πs

∂t
,

in the continuity equation and integrating to level η we find

B(η)
∂πs

∂t
= −

∫ η

0

∇.

(
~v

∂p

∂η

)
dη − η̇

∂p

∂η
.

The model coordinate-related vertical velocity can therefore be written as

η̇
∂p

∂η
= B(η)

∫
1

0

∇.

(
~v

∂p

∂η

)
dη −

∫ η

0

∇.

(
~v

∂p

∂η

)
dη + δmgB(η)(E + R + S)
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or (
η̇
∂p

∂η

)δm=1

=

(
η̇
∂p

∂η

)δm=0

+ δmgB(η)(E + R + S). (9)

The pressure-related vertical velocity becomes

ω =
∂p

∂t
+ ~v.∇p + η̇

∂p

∂η

= ~v.∇p +

∫ η

0

∂

∂η

(
∂p

∂t
+ η̇

∂p

∂η

)
dη

= ~v.∇p −

∫ η

0

∇.

(
~v

∂p

∂η

)
dη,

which doesn’t depend on the precipitation flux any more, thanks to the ‘barycentric choice’.

3.2 Conservation of the different species

In the barycentric environment the precipitation flux will cause a compensating lift (referred to the
barycentre) of the non-precipitating part (dry air, water vapour, liquid and solid water). The corre-
sponding fluxes of the non-precipitating species should cancel out the total precipitating flux. Hence
we can write for the water vapour part (and similar for the other non-precipitating species) the com-
pensating flux as

qv(Pl + Pi)

qa + qv + ql + qi
=

qv(Pl + Pi)

1 − qr − qs

Introducing directly δm with respect to eq. (1), the conservation of water vapour can be written as

∂

∂t

(
qv

∂p

∂η

)
= −∇.

(
qv~v

∂p

∂η

)
−

∂

∂η

(
qv η̇

∂p

∂η

)

−g
∂

∂η

(
P ′

l − P ′′′
l + P ′

i − P ′′′
i − δm

qv(Pl + Pi)

1 − qr − qs

)
− g

∂Jqv

∂η
.

Subtracting qv× the continuity equation and finally multiplying by ∂η/∂p gives us

dqv

dt
= −g

∂

∂p
(P ′

l + P ′
i ) + g

∂

∂p
(P ′′′

l + P ′′′
i ) + δmg

∂

∂p

(
qv

Pl + Pi

1 − qr − qs

)
− g

∂Jqv

∂p
(10)

Similarly we have

dql

dt
= +g

∂P ′
l

∂p
− g

∂P ′′
l

∂p
+ δmg

∂

∂p

(
ql

Pl + Pi

1 − qr − qs

)
− g

∂Jql

∂p
(11)

dqr

dt
= +g

∂P ′′
l

∂p
− g

∂P ′′′
l

∂p
− g

∂Pl

∂p
(12)

dqi

dt
= +g

∂P ′
i

∂p
− g

∂P ′′
i

∂p
+ δmg

∂

∂p

(
qi

Pl + Pi

1 − qr − qs

)
− g

∂Jqi

∂p
(13)

dqs

dt
= +g

∂P ′′
i

∂p
− g

∂P ′′′
i

∂p
− g

∂Pi

∂p
(14)

dqa

dt
= (1 − δm)g

(
∂Pl

∂p
+

∂Pi

∂p

)
+ δmg

∂

∂p

(
qa

Pl + Pi

1 − qr − qs

)
− g

∂Jqa

∂p
(15)

It is rapidly verified that all terms cancel out, so qa + qv + ql + qr + qi + qs remains 1. In case δm = 0,

4



this set transforms to eqs. (1-6). Moreover, these expressions are fully consistent with the AROME
equations, given by

dqk

dt
= −

1

ρ
∂α(ρqkv

α
k ) +

ρ̇k

ρ
−

1

ρ
∂α(ρ′q′kv

′α
k ), k = a, v, l, r, i, s (α = 3)

where the vertical velocity of the non-precipitating species with respect to the barycentre is

wk = −
Pl + Pi

ρ(1 − qr − qs)
= −

qrwr + qsws

1 − qr − qs

and with ρ′q′kv
′
k the turbulent flux of the considered species, which is zero for precipitating species.

3.3 The Thermodynamic equation

For simplicity we will put back δm = 1 in this paragraph.

As there are compensating enthalpy fluxes due to the barycentric regime, these fluxes will also have
to be included in the thermodynamic equation:

∂

∂t

(
T

∂p

∂η

)
= −∇.

(
T~v

∂p

∂η

)
−

∂

∂η

(
T η̇

∂p

∂η

)
+

g

cp
Ll(T )

(
∂P ′

l

∂η
−

∂P ′′′
l

∂η

)

+
g

cp
Li(T )

(
∂P ′

i

∂η
−

∂P ′′′
i

∂η

)
−

g

cp

[
clPl + ciPi −

cp − clqr − ciqs

1 − qr − qs
(Pl + Pi)

]
∂T

∂η

−
g

cp

∂Js

∂η
+

gT

cp

(
cpd

∂Jqa

∂η
+ cpv

∂Jqv

∂η
+ cl

∂Jql

∂η
+ ci

∂Jqi

∂η

)
−

g

cp

∂Jrad

∂η
(16)

Once again the physical part of this equation is fully consistent with the physical part of the AROME
thermodynamic equation (for α = 3):

cp

(
∂T

∂t

)

Φ

= Q̇i +
1

ρ
(L21(ρ̇2 + ρ̇3) + L41(ρ̇4 + ρ̇5)) −

∑

k

cpkqkv
α
k ∂αT, k = a, v, l, r, i, s

where ρ̇2 corresponds to P ′
l , ρ̇3 to −P ′′′

l , ρ̇4 corresponds to P ′
i , ρ̇5 to −P ′′′

i and Q̇i is the divergence of
the diffusive heat flux. The vertical velocities are given in the previous subsection.

Rewriting the physical part of equation (16) gives us

cp

(
∂T

∂t

)

Φ

= gLl(T )

(
∂P ′

l

∂p
−

∂P ′′′
l

∂p

)
+ gLi(T )

(
∂P ′

i

∂p
−

∂P ′′′
i

∂p

)
− g

∂Js

∂p
− g

∂Jrad

∂p

−g

[
clPl + ciPi −

cp − clqr − ciqs

1 − qr − qs
(Pl + Pi)

]
∂T

∂p
+ gT

(
cpd

∂Jqa

∂p
+ cpv

∂Jqv

∂p
+ cl

∂Jql

∂p
+ ci

∂Jqi

∂p

)
. (17)

Writing cp as cp = cpdqa + cpvqv + cl(ql + qr) + ci(qi + qs) and using
Ll|i(T ) = Ll|i(T = 0) + (cpv − cl|i)T , we can rewrite equation (17) as

(
∂

∂t
(cpT )

)

Φ

= g
∂

∂p

[
Ll(T )(P ′

l − P ′′′
l )

]
− (cpv − cl)

∂T

∂p
(P ′

l − P ′′′
l )

+g
∂

∂p

[
Li(T )(P ′

i − P ′′′
i )

]
− (cpv − ci)

∂T

∂p
(P ′

i − P ′′′
i )
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−g

[
clPl + ciPi −

cp − clqr − ciqs

1 − qr − qs
(Pl + Pi)

]
∂T

∂p
− g

∂Jrad

∂p

−gT
∂

∂p

[
clPl + ciPi −

cp − clqr − ciqs

1 − qr − qs
(Pl + Pi)

]
− g

∂Js

∂p

−gcpvT
∂

∂p
(P ′

l − P ′′′
l + P ′

i − P ′′′
i ) + gclT

∂

∂p
(P ′

l − P ′′′
l ) + gciT

∂

∂p
(P ′

i − P ′′′
i )

Finally we arrive at,
(

∂

∂t
(cpT )

)

Φ

= g
∂

∂p

[
Ll(T )(P ′

l − P ′′′
l ) − (cpv − cl)T (P ′

l − P ′′′
l ) + Li(T )(P ′

i − P ′′′
i )

−(cpv − ci)T (P ′
i − P ′′′

i ) + (ĉ(Pl + Pi) − clPl − ciPi)T − Js − Jrad

]
(18)

with

ĉ =
cpdqa + cpvqv + clql + ciqi

1 − qr − qs

3.4 δm = 0 vs δm = 1

The combination can be written as(
∂

∂t
(cpT )

)

Φ

= g
∂

∂p

[
Ll(T )(P ′

l − P ′′′
l ) − (cpv − cl)T (P ′

l − P ′′′
l ) − (cl − cpd)PlT

+Li(T )(P ′
i − P ′′′

i ) − (cpv − ci)T (P ′
i − P ′′′

i ) − (ci − cpd)PiT

+δm(ĉ − cpd)(Pl + Pi)T − Js − Jrad] (19)

Equation (19) together with eqs. (10-15) show the impact of the δm option in all closed budget
equations of our set.

3.5 Simplification

Similarly as we rewrote eq. (7) we can simplify equation (19) to
(

∂

∂t
(cpT )

)

Φ

= −g
∂

∂p
[(cl − cpd)PlT + (ci − cpd)PiT − δm(ĉ − cpd)(Pl + Pi)T ]

+Ll(T = 0)

(
∂P ′

l

∂p
−

∂P ′′′
l

∂p

)
+ Li(T = 0)

(
∂P ′

i

∂p
−

∂P ′′′
i

∂p

)
− g

∂Js

∂p
− g

∂Jrad

∂p
= −g

∂Jtotal

∂p
(20)

with Jtotal a short-hand notation for showing that the whole right hand side of equation (20) is only
a flux divergence and which we will frequently use in the next section. In this form of the equation
we better see how the arbitrariness of P ′

l|i and P ′′′
l|i (up to a constant) does not matter, since only the

divergence of these quantities are used and since those divergences are only multiplied by constant
values for the latent heat (Ll|i(T = 0)).

4 Non-Hydrostatic Compressible Projection

All the above is only true when the addition/removal of heat is projected only on a temperature
change and has no pressure change equivalent. This is of course no problem in the hydrostatic case
but when going to the compressible case (where no anelastic approximation is made), we would like
to include also the more physical option where any heat source is projected on both temperature and
pressure changes.

For simplicity, the demonstration below will not include turbulent fluxes. It will implicitely be assumed
that δm = 1.
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4.1 The Thermodynamic equation

We start with the general entropy expression given by Marquet which we multiply by qa in order to
have an expression per unit of mass:

S′ = qaS = (qacpd + qtcpv) ln(T ) − qaRd ln(p − e) − qtRv ln(e) −
Ll(T )

T
(ql + qr) −

Li(T )

T
(qi + qs) (21)

with qt = qv + ql + qr + qi + qs and S′ the total entropy per unit of mass. Note that this expression
does not include any precipitation processes but those will be added later.

Time-derivation gives us:

dS′

dt
=

Q̃

T
= (qacpd + qtcpv)

1

T

dT

dt
+ cpd ln(T )

dqa

dt
+ cpv ln(T )

dqt

dt
− Rd ln(p − e)

dqa

dt

−
qaRd

p − e

d(p − e)

dt
− Rv ln(e)

dqt

dt
−

qtRv

e

de

dt
−

Ll(T )

T

(
dql

dt
+

dqr

dt

)
−

Li(T )

T

(
dqi

dt
+

dqs

dt

)

−
(cpv − cl)

T
(ql + qr)

dT

dt
−

(cpv − ci)

T
(qi + qs)

dT

dt
+

Ll(T )

T 2
(ql + qr)

dT

dt
+

Li(T )

T 2
(qi + qs)

dT

dt
(22)

with Q̃ the diabatic heat source out of which the precipitation effects are filtered. Following Bannon
(2002), we subtract from the expression above the change in entropy due to precipitation. This change
can be written as a sum of entropy-fluxes associated with the different mass-fluxes with respect to the
barycentre. We have the following mass-fluxes:

qa → Fa = −qa
Pl + Pi

1 − qr − qs

qv → Fv = −qv
Pl + Pi

1 − qr − qs

ql → Fl = −ql
Pl + Pi

1 − qr − qs

qr → Fr = Pl

qi → Fi = −qi
Pl + Pi

1 − qr − qs

qs → Fs = Pi

such that the associated entropy change can be written as

dSprecip = −g
∂

∂p
(saFa) − g

∂

∂p
(svFv) − g

∂

∂p
(slFl) − g

∂

∂p
(srFr) − g

∂

∂p
(siFi) − g

∂

∂p
(ssFs) (23)

with sx the specific entropy of the different mass species which we can write as (up to a constant):

sa = cpd ln(T ) − Rd ln(p − e)

sv = cpv ln(T ) − Rv ln(e)

sl = cl ln(T )

sr = cl ln(T )

si = ci ln(T )

ss = ci ln(T )

Rewriting (23), we must subtract

+gcpdqa
Pl + Pi

1 − qr − qs

1

T

∂T

∂p
+ gcpd ln(T )

∂

∂p

(
qa

Pl + Pi

1 − qr − qs

)
− gRd ln(p − e)

∂

∂p

(
qa

Pl + Pi

1 − qr − qs

)
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+gcpvqv
Pl + Pi

1 − qr − qs

1

T

∂T

∂p
+ gcpv ln(T )

∂

∂p

(
qv

Pl + Pi

1 − qr − qs

)
− gRv ln(e)

∂

∂p

(
qv

Pl + Pi

1 − qr − qs

)

+gclql
Pl + Pi

1 − qr − qs

1

T

∂T

∂p
+ gcl ln(T )

∂

∂p

(
ql

Pl + Pi

1 − qr − qs

)
− gcl

Pl

T

∂T

∂p
− gcl ln(T )

∂Pl

∂p

+gciqi
Pl + Pi

1 − qr − qs

1

T

∂T

∂p
+ gci ln(T )

∂

∂p

(
qi

Pl + Pi

1 − qr − qs

)
− gci

Pi

T

∂T

∂p
− gci ln(T )

∂Pi

∂p
(24)

from (22). Doing so and using the following relations

qv = qa
Rd

Rv

e

p − e
(25)

de

dT
=

Ll|i(T )ρv

T
(26)

dqa

dt
= −

dqt

dt
(27)

Ll(T ) = T (sv − sl) and Li(T ) = T (sv − si) (28)

we finally get

Q̃ = cp
dT

dt
−

1

ρ

dp

dt
− gLl(T )

(
∂P ′

l

∂p
−

∂P ′′′
l

∂p

)
− gLi(T )

(
∂P ′

i

∂p
−

∂P ′′′
i

∂p

)

+

[
gclPl + gciPi − g

cp − clqr − ciqs

1 − qr − qs
(Pl + Pi)

]
∂T

∂p
(29)

which we can rewrite as

cp
dT

dt
− RT

d ln(p)

dt
= Q, (30)

with Q the full diabatic heat source. If we define this heat source as

Q = −g
∂Jtotal

∂p
− T

dcp

dt
, (31)

we can rewrite (29) as
d(cpT )

dt
− RT

d ln(p)

dt
= −g

∂Jtotal

∂p
. (32)

In case of no precipitation and phase-changes (the linear case, i.e. constant cp and R in the lagrangian
sense) (30) becomes

cp
dT

dt
− RT

d ln(p)

dt
= Q, (33)

with Q the ‘linear’ diabatic heat source which is the heat source out of which the effects of both
phase-changes and precipitation are filtered out.

4.2 The Compressible case

In the compressible case we want to have a choice between the equivalent of the above (so-called
quasi-anelastic approximation for the physical forcing, i.e. an unchanged thermodynamic equation
with respect to the hydrostatic case as well as no pressure effect) and the more physical one where
any heat source is projected on both temperature and pressure changes.
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In the linear case (constant cp, cv and R) this means replacing

cp
dT

dt
− RT

d ln(p)

dt
= Q (34)

cv
d ln(p)

dt
+ cpD3 = 0 (35)

by

cp
dT

dt
− RT

d ln(p)

dt
= Q (36)

cv
d ln(p)

dt
+ cpD3 =

Q

T
(37)

with D3 = −d ln(ρ)/dt the three-dimensional divergence. Note that the first equation does not change
in this way of writing. Eliminating the cross-term d ln(p)/dt, the first lines of both sets of equations
also write:

dT

dt
+

RT

cv
D3 =

Q

cp
(38)

dT

dt
+

RT

cv
D3 =

Q

cv
, (39)

which shows the change of emphasis from cp to cv if one has the same dynamical terms.

Leaving the linear case, we assume varying cp, cv and R and start with the accepted equation (30)

cp
dT

dt
− RT

d ln(p)

dt
= Q.

Using the definition of Q (eq. (31)), the state law p = ρRT , the relation cp = cv +R and the continuity
equation in the following form

d ln(ρ)

dt
+ D3 = 0

we find
d(cvT )

dt
+ RT D3 = −g

∂Jtotal

∂p
(40)

Using the time derivative of the logarithmic form of the state law, we also obtain

cv
d ln(p)

dt
+ cpD3 = −

g

T

∂Jtotal

∂p
−

dcv

dt
+

cv

R

dR

dt
(41)

So we finally have the following set of equations:

cv
dT

dt
+ RT D3 = Q + T

dR

dt
(42)

cv
d ln(p)

dt
+ cpD3 =

Q

T
+

cp

R

dR

dt
(43)

Equation (41) can also be written as

d ln(cvp/R)

dt
+

cp

cv
D3 = −

g

cvT

∂Jtotal

∂p
(44)
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4.3 Summary

In the general case (phase-changes and precipitation) we have in the hydrostatic and anelastic cases
the following set of equations:

cp
dT

dt
− RT

d ln(p)

dt
= Q (45)

cv
d ln(p)

dt
+ cpD3 = 0, (46)

whereas in the compressible case we have the following option

cv
dT

dt
+ RT D3 = Q + T

dR

dt
(47)

cv
d ln(p)

dt
+ cpD3 =

Q

T
+

cp

R

dR

dt
. (48)

Note that the first equation of both sets are equivalent. From the practical point of view this means
replacing

d(cpT )

dt
− RT

d ln(p)

dt
= −g

∂Jtotal

∂p
(49)

cv
d ln(p)

dt
+ cpD3 = 0 (50)

by

d(cvT )

dt
+ RT D3 = −g

∂Jtotal

∂p
(51)

d ln(cvp/R)

dt
+

cp

cv
D3 = −

g

cvT

∂Jtotal

∂p
(52)

5 Remarks

5.1 Absolute vs relative motions

If we put P ∗
l = w∗

rρr and P ∗
i = w∗

sρs respectively the rain and snow flux as seen by the micro-physical
scheme (the ‘absolute’ fluxes, with w∗

r and w∗
s the ‘absolute’ falling velocities), then we can write the

corresponding fluxes with respect to the barycentre as

Pl = wrρr = (1 − qr)P
∗
l − qrP

∗
i (53)

Pi = wsρs = (1 − qs)P
∗
i − qsP

∗
l , (54)

so that
Pl + Pi = (1 − qr − qs)(Pl + Pi)

∗. (55)

Now one can rewrite the conservative form of the thermodynamic equation in function of the absolute
fluxes or velocities.

5.2 Number of precipitation processes

It is easily verified that in case of only one precipitation process all the equations stated in this
manuscript will transform to the equations of a single precipitation process. In case there are several
precipitation processes associated with one of the water phases (like snow, graupel and hail, for exam-
ple) the system can easily be expanded to cover distinctions in the fall velocity (the only parameter
that matters for the type of equations written here).
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5.3 Present ARPEGE/ALADIN case (conceptualised as: Pprec = ρprecwprec with
ρprec = 0 and wprec = ∞)

In this case the mass of precipitating species is neglected (ρprec = qr = qs = 0) but their vertical
velocity of precipitation is infinite (wprec = wr = ws = ∞) to allow the removal of the precipitation
in one time-step.
The product of both quantities gives back the precipitation flux and once again it is possible to verify
that the ARPEGE/ALADIN equations are a special case of equations (10-15) and (17), at least for
the case deltam = 0.
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