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Recommendations on the verification of local weather forecasts 

 

1. Introduction - Background 
The ECMWF Technical Advisory Committee (TAC) noted at its 32nd session (2002) that the 
“Recommendations on the verification of local weather forecasts” annexed to the annual Report on 
Verification of ECMWF products in Member States and Co-operating States (hereafter referred to as MS), 
the so-called “Green Book”, had been drafted some ten years ago. The TAC therefore requested that these 
recommendations be reviewed and revised in the light of current circumstances. 

Recent progress in numerical weather prediction, as well as developments in forecast verification methods 
has been vigorous. The advent of probabilistic methods into operational numerical weather prediction has 
taken place during the last decade, and with the introduction of the Ensemble Prediction Systems (EPS) 
dramatically widened the use and applicability of NWP output in operational weather services within 
ECMWF MSs. 

There are, and have been, various verification activities under the auspices of WMO like the newly founded 
Working Group on Verification (WGV) ([web 1]) within the World Weather Research Program (WWRP), or 
the more established verification group under the Working Group on Numerical Experimentation (WGNE) 
(Bougeault, 2003; [ref 1]). The emphasis of the latter is focused on verification techniques oriented toward 
model developers, while the role of the WGV is more directed to end users of high impact weather forecasts.  

There is a host of recent important international conferences and workshops, either solely dedicated to 
verification issues, e.g. 

• Workshop on Making Verification More Meaningful (Boulder, 2002; [ref 2], [web 2]) 

• WWRP/WMO Workshop on the Verification of Quantitative Precipitation Forecasts (Prague, 
2001; [web 3]) 

• EUMETNET/SRNWP Mesoscale Verification Workshop (De Bilt, 2001; [ref 3]) 

or, with a strong verification context, e.g. 

• International Conference on Quantitative Precipitation Forecasting (Reading, 2002; [ref 4]) 

• The biennial European Conference(s) on Applications of Meteorology (ECAM) 

Two important textbooks with wide coverage on forecast verification methodologies need be highlighted, the 
earlier by Wilks (1995; [ref 5]) and the very recent by Jolliffe and Stephenson (2003; [ref 6]). A historical 
survey on verification methodology was compiled by Stanski et al. (1989; [ref 7]).  

The Internet has dramatically established itself as the media and the means to communicate information. 
There are many websites with a wealth of verification content and their value is undeniable (e.g. [web 4, 5, 
6]). However, one is easily lost in the web space where various different notations and formulae flourish 
depicting same methods and measures. 

The past few years have seen efforts in harmonizing international verification practices. Strict rules to 
slavishly follow pre-defined verification measures and scores has proven to be a difficult and an undesirable 
task. Nevertheless, it is strongly advisable to adopt a general, coherent framework in forecast verification and 
to utilize common state-of-the-art methods. One example toward this objective was the WMO/CBS realized 
Standardised Verification System for Long-Range Forecasts ([web 7]). For purely model-based large-scale 
numerical forecasts standardisation is, however, fairly straightforward compared to harmonizing the 
verification of various local weather forecast products, originating at operational national weather offices, 
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where forecasting practices, parameters, lead times, forecast lengths, valid periods etc. are typically quite 
different. 

Most of the above has taken place since the previous ECMWF “Green Book” verification recommendations 
were produced. A revision is therefore justified. It is the objective of these updated recommendations to take 
into account recent developments and guidelines in verification and also to cope with new model 
developments and forecast products originating thereof, without neglecting the common traditional methods. 

The original reasoning and ideology behind the recommendations and the eventual “Green Book” 
contributions by the MSs have, however, not changes in the course of time. The previous reports and the 
existing “verification history” they contain serve as a valuable reference for future reports. The reports are 
meant as a forum to provide, on the one hand, valuable exchange information between the MSs to learn 
from each others’ experiences and, on the other hand, to produce valuable feedback to the Centre on MS’s 
verification activities and results of localized model behaviour, and even to distinguish possible model 
weaknesses. The latter function does not necessarily fall into the primary activities of the ECMWF itself 
where a more global verification approach is applied. 

Chapter 2 of the recommendations provides some general guidelines, followed by an overview of the 
properties of various verification measures for continuous meteorological variables (Chapter 3), for binary 
and multi-category weather events (Chapter 4) and for probabilistic forecasts (Chapter 5). Forecast value and 
the end user decision making issues associated with forecast verification is covered briefly in Chapter 6, 
followed by a short Chapter 7 on other related issues concerning MSs verification activities. Proposals for 
means and measures to be followed up in MSs’ annual contributions to the “Green Book” are highlighted 
and proposed at the end of each chapter. 

The recommendations are outlined, having taken into account what has been reported by MSs in the “Green 
Books” of recent years, and, when appropriate, to be in harmony with the latest textbook on verification ([ref 
6]), where an interested reader is referred to. It is the idea to keep the proposal at a fairly simple level to 
enable and encourage easy and straightforward applicability. In addition, MSs are warmly welcome to 
contribute whatever local verification studies they may think of being of general interest. At the end of the 
document, there are two lists of references, one to printed literature (quoted by [ref #] in the text) and, the 
other, for recommended websites existing at the time of writing (quoted by [web #]). 

It is planned that these recommendations will eventually find their way under the ECMWF website (probably 
as a downloadable “pdf” document), where additions and possible corrections can be applied. The web 
version is meant as a helpful, living guidance when the preparation of national verification contributions is 
topical. 

2. General guidelines 
While the ECMWF boasts a comprehensive system to perform standard verifications of the upper air fields, 
the emphasis of the requested MS reporting is on the verification of local forecasts of weather elements 
and (severe) weather events. The origin of such forecasts may be the relevant parameters based on 
ECMWF direct model output (DMO). A natural second origin would be statistically or otherwise adapted, 
post-processed products (PPP) basing, e.g. on local perfect prog, MOS, or Kalman filtering schemes. The 
third forecast source would be the End Products (EP) delivered to the final end users. Although ECMWF is 
essentially aiming at medium-range (and longer) forecast ranges, it is appropriate and encouraged to produce 
comparisons of ECMWF DMO and derived PPP against corresponding output deriving from local 
numerical models  like national Limited Area Models. Thus, an obvious comparison of a forecast production 
chain would comprise of: 
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 DMO (model i)  vs.  PPP (model i)  vs.  EP, 

 where subscript i defines the model (ECMWF,…) 

An analysis would then be obtained of the local post-processing scheme’s ability to add value to direct model 
output and, additionally, whether local forecasters are able to outperform either guidance. 

Since the ECMWF output is being disseminated in various horizontal grid resolutions and because MSs are 
possibly applying various of these (e.g. 0.5 vs. 1.5 degrees) in their applications and, further, because local 
models presumably also have various resolutions, it is requested to report on the grid resolution that has 
been used in the relevant verification statistics. Somewhat addressing this issue is the so-called “double 
penalty” problem, i.e. objective verification scores for local weather parameters may be better for a low 
resolution model than for a high resolution model. Although increased resolution typically provides more 
detailed small scale structures and stronger gradients in the forecasts, the consequent space and timing errors 
will easily be superfluous as compared to a lower resolution model. Especially if the scoring methods 
involve squared error measure (like the RMSE) the results may be quite misleading. One should try to 
elaborate this feature in the interpretation of the eventual verification statistics. 

The verification process involves as one of its most central features the definition of the true state of the 
observed weather. Likewise  forecasts, uncertainties and errors are evident in the observations. Traditionally, 
the observations originate from the synop observing network. It is, however, encouraged to adopt and 
experiment with new, more unconventional and more detailed observational data like those of 
meteorological radars and satellites as the observational “truth” in forecast verification. 

With the increase in the resolution of numerical models it may be the case that model resolution exceeds that 
of the observations, leading to an inherent verification dilemma. The horizontal scale difference between 
observations and forecasts remains easily neglected. The density of the (traditional) observing network is 
highly variable. This raises the question of point vs. area-averaged verification. When the resolution of 
observations is higher than that of the model to be verified, one can upscale (e.g. Cherubini et al., 2001; [ref 
8]) the observations to the model grid, rather than compute verification statistics against synop stations 
nearest to individual model gridpoints. This has proven to give more realistic and justified verification 
statistics. On the other hand, when the model resolution exceeds that of the observations, the closest 
gridpoint approach is often preferable. Care must be taken, however, close to coastlines or in variable 
terrain. Approaches to increase the availability and representativeness of observational data is in all cases 
of utmost importance. 

The basic general framework of forecast verification addresses to the joint distribution of forecast vs. 
observation pairs and the methods to perform comparisons between them. A deterministic or a probabilistic 
(dichotomous or multivariate) distribution, p (forecasts, observations), can be split into marginal 
distributions of forecasts, p (f), and observations, p (o), and, further, the conditional distributions of forecasts 
given observations, p (f|o), and observations given forecasts, p (o|f). More of the subject can be found in an 
important paper by Murphy and Winkler (1987; [ref 9]) 

The aggregation of forecast vs. observation pairs into sufficiently large samples for evaluation is often 
required (for statistical significance)  but, inversely, stratification of the results to be able to distinguish 
revealing details in the behaviour of the forecasts (or the models) is equally or even more important. There 
are various foundations for stratification: 

• time; annual, biannual, seasonal, quarterly, monthly, time of day (diurnal cycle) 

• forecast range; degradation of scores with lead time 
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• values of the quantity or thresholds of the event 

• spatial; effects of land-sea contrast, altitude, snow-covered vs. bare terrain etc. 

A comprehensive verification system will include a reference no-skill forecasting system against which to 
compare the forecasts. Climatology, persistence and chance are examples of references needed for the 
computation of the skill score and the economic value. Persistence typically provides a more competitive 
reference forecasts than climate up to c. two days forecast range. Both should be quite easily derived within 
national weather services, so utilization of both references is proposed. Likewise, the verification of 
probabilistic forecasts requires knowledge of the climatological distributions or cumulative probability 
distributions (cdf) of the relevant events. From the model point of view the Centre has a relatively sound 
knowledge of model climate. However, the MSs, having access to their own observation databases,  are in a 
more proper position to define local observation-based climatological distributions to produce reference 
verification data both in the measurement and in the probability space. 

Verification statistics should be accompanied by statistical significance testing, especially in the cases of 
severe/extreme weather events. The relative frequency of extreme weather is, by definition, very low and, 
consequently, sample sizes small. Wrong conclusions are therefore easily being made. Extreme event 
forecasting should be supported by probabilistic guidance like the ECMWF Extreme Forecast Index 
(EFI).  

The MSs are strongly encouraged to develop operational, online, real-time verification software with a 
modular structure for easy updates and modifications. An added facility to produce periodical verification 
reports covering the most common verification measures is likewise supported. Such software already exists 
in a number (~10) of MSs according to their “Green Book” reporting. Operational verification packages 
enable a fairly straightforward reproduction of verification statistics to serve the additional purpose of 
contributing to the “Green Book” on a regular, coherent basis. It is requested to continue keeping ECMWF 
(and other MSs) informed whether (i) operational verification schemes (either intra- or internet) exist and/or, 
(ii) periodical verification reports are being produced. 

To summarize, it is proposed to: 

• verify local forecasts of weather elements and severe weather events 

• compare DMO vs. PPP vs. EP 

• consider model grid resolution(s) being used 

• evaluate the representativeness of observational data 

• distinguish outliers in data 

• derive local climatological distributions, including cumulative probability distributions 

• apply radar and/or satellite observations in addition to conventional observational data 

• consider point vs. area verification, taking into account upscaling of observations and the closest 
gridpoint approach 

• utilize several no-skill reference forecasts to compute verification scores 

• perform aggregation and stratification of results 

• perform statistical significance and hypothesis testing 

• compute and analyse the economic value of forecasts 

• develop operational verification systems and report on their features 

 



Recommendations on the verification of local weather forecasts 

 
3. Continuous variables 
The verification of continuous variables typically provides statistics on how much the forecast values differ 
from the observations and, thereafter, computation of relative measures against some reference forecasting 
systems. The most common continuous local weather parameters to verify are: 

• Temperature: fixed time (e.g. noon, midnight), Tmin, Tmax, time-averaged (e.g. five-day) 

• Wind speed and direction: fixed time, time-averaged 

• Accumulated precipitation: time-integrated (e.g. 6, 12, 24 hours) 

• Cloudiness: fixed time, time-averaged; typically categorized 

Their behaviour can, however, be quite different: when the temperature may behave quite smoothly and 
follow a Gaussian distribution, the wind speed is often very sporadic, the precipitation intermittent, and the 
cloudiness following a U-shaped distribution. 

The best first way to approach verification of continuous predictands is to produce scatter plots of forecasts 
vs. observations. Rather than being a verification measure, scatterplot is a means to explore the data and can 
thus provide a visual insight to the correspondence between forecast and observed distributions. An excellent 
feature is the possibility to distinguish at a glance potential outliers either in the forecast or in the 
observation dataset. Accurate forecasts would have the points lined on a 45 degree diagonal in a square 
scatterplot box. Additional useful ways to produce scatterplots are in the form of: 

• observation vs. [ forecast - observation ] 

• forecast vs. [ forecast - observation ] 

i.e. either the observation or the forecast plotted against their difference. Such plotting provides a visually 
descriptive method to see how forecast errors behave with respect to observed or forecast distributions 
revealing potential clustering or curvature in their relationships. 

In a similar manner as the scatterplot, a time-series plot of forecasts vs. observations (or forecast error) quite 
easily uncovers potential outliers in either forecast or observation datasets. Trends and time-dependent 
relationships are easily discernible. Neither scatterplots nor time series plots will provide any concrete 
measures of accuracy. 

The next proposed step is always to compute the simple average difference between the forecast and the 
observation, the systematic or the Mean Error (bias): 

 ME = ( 1/n )  Σ ( fi - oi ) 

The bias is the simplest and most familiar of scores and can provide very useful information on the local 
behaviour of a given weather parameter (e.g. maximum temperature close to the coastline or minimum 
temperature over snow-covered ground). The ME range is from minus infinity to infinity, and a perfect score 
is = 0. However, it is possible to reach a perfect score for a dataset with large errors, if there are 
compensating errors of a reverse sign. The ME is not an accuracy measure as it does not provide information 
of the magnitude of forecast errors. 

A simple measure to compensate for the potential positive and negative errors of the ME is to next compute 
the Mean Absolute Error: 

 MAE = ( 1/n )  Σ | fi - oi | 
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The MAE range is from zero to infinity and, as with the ME, a perfect score equals = 0. The MAE measures 
the average magnitude of forecast errors in a given dataset and therefore is a scalar measure of forecast 
accuracy. It is advisable to always view the ME and the MAE simultaneously. 

Another common accuracy measure is the Mean Squared Error: 

 MSE = ( 1/n )  Σ ( fi - oi ) 2 

or its square root, the RMSE, which would have the same unit as the forecast parameter. As with the MAE, 
their range is from zero to infinity with a perfect score of = 0. MSE is the squared difference between 
forecasts and observations. Due to the second power, the MSE and RMSE are much more sensitive to large 
forecast errors than the MAE. This may be especially harmful in the presence of potential outliers in the 
datasets and, consequently, at least with small or limited datasets the use of the MAE is preferred. The fear 
for the high penalty of large forecast errors will easily lead a forecaster to a conservative forecasting practice. 
MAE is also more practical from the duty forecasters’ intuition as it shows the errors in the same unit and 
scale as the parameter itself. 

A recommended (at least for experimentation) measure which, however, is not yet in wide use is the Linear 
Error in Probability Space: 

 LEPS = ( 1/n )  Σ | CDFo (fi) - CDFo (oi) | , 

where CDFo is the Cumulative probability Density Function of the observations, determined from a relevant 
climatology. (Note: LEPS should not be confused with another, completely different LEPS notation, the 
Limited-area Ensemble Prediction System!) LEPS is the MAE in probability, rather than measurement space, 
and is defined as the mean absolute difference between the cumulative frequency of the forecast and the 
cumulative frequency of the observation. Its range is from zero to unity, with a perfect score equalling = 0. 
LEPS does not depend on the scale of the variable to be verified and takes the variability of the parameter 
into account. It can be used to evaluate forecasts between different locations. LEPS computation may require 
some elaboration of the local observation datasets because of the need for appropriate climatological 
cumulative distributions at each forecast point. Thereafter its derivation is straightforward. Nevertheless, this 
is much more natural to be done locally at MSs than by the ECMWF. An attractive feature of the LEPS is 
that it encourages forecasting in the extreme tails of the climate distributions, when justified, by penalizing 
less than for a similar size error in a more probable region of the climatological distribution. 

The original form of LEPS is reported to “exhibit certain pathological behaviour at its extremes” ([ref 6, p. 
92). Therefore certain correction and normalization terms have been introduced, leading to: 

 LEPSrev = 3* ( 1 - | Ff - Fo | + Ff 2 - Ff + Fo 2 - Fo ) - 1 , where 

Ff and Fo are the CDFos of the forecasts and observations, respectively. 

Relative accuracy measures that provide estimates of the (percentage) improvement of the forecasting system 
over a reference system can be defined in the form of a general skill score: 

 SS = ( A - Aref  ) / ( Aperf  - Aref  ) , 

where A = the applied measure of accuracy, Aperf  = the value of the accuracy measure which would result 
from perfect forecasts, and Aref = the accuracy value of reference forecasts, typically climatology or 
persistence (both should be used). For negatively oriented accuracy measures (i.e. smaller values of A are 
better, like MAE, LEPS, and MSE) the skill score becomes: 

 SS = 1 - A / Aref 
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It is encouraged to compute the skill of EP vs. PPP vs. DMO. Consequently, it is proposed to apply: 

 MAE_SS = 1 - MAE / MAEref 

 LEPS_SS = 1 - LEPS / LEPSref 

 MSE_SS = 1 - MSE / MSEref 

The range of skill scores is minus infinity to unity (for a perfect forecast system), with a value = 0 indicating 
no skill over the reference forecasts. Skill scores can be unstable for small sample sizes, especially if 
MSE_SS were used. 

To summarize (including the general guidelines), and indicating minimum and optimum 
requirements, it is proposed to: 

• verify a comprehensive set of continuous local weather variables 

• minimum proposal:  produce scatterplots and time-series plots, including forecasts and/or 
observations against their difference 

• minimum proposal:  compute ME, MAE, MAE_SS 

• optimum proposal:  compute LEPS (and LEPSrev ), LEPS_SS, MSE, MSE_SS 
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Example 1 - Scatterplot of one year of ECMWF three-day T2m forecasts (left) and forecast errors (right) 
versus observations at a single location. Red, yellow and green dots separate the errors in three 
categories. Some basic statistics like ME, MAE and MSE are also shown. The plots reveal the dependence 
of model behaviour with respect to temperature range, i.e. over- (under ) forecasting in the cold (warm) 
tails of the distribution. 
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Example 2 - Temperature bias and MAE comparison between ECMWF and a Limited Area Model (LAM) 
(left), and an experimental post-processing scheme (PPP) (right), aggregated over 30 stations and one 
winter season. In spite of the ECMWF warm bias and diurnal cycle, it has a slightly lower MAE level 
than the LAM (left). The applied experimental “perfect prog” scheme does not manage to dispose of the 
model bias and exhibits larger absolute errors than the originating model – this example clearly 
demonstrates the importance of thorough verification prior to implementing a potential post-processing 
scheme into operational use. 
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Example 3 - Mean Absolute Errors of End Product and DMO temperature forecasts (left), and Skill of the 
End Products over model output (right). The better of either ECMWF or local LAM is chosen up to the 
+48 hour forecast range (hindcast), thereafter ECMWF is used. The figure is an example of both 
aggregation (3 stations, several forecast ranges, two models, time-average) and stratification (seasons). 

Hypothetical climatological wind speed distribution
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Example 4 - Application and computation of LEPS for a hypothetical wind speed distribution at an 
assumed location, where the climatological frequency distribution (left) is transformed to a cumulative 
probability distribution (right). A 2 m/s forecast error around the median, in the example 15 m/s vs. 13 
m/s (red arrows), would yield a LEPS value of c. 0.2 in the probability space ( | 0.5 – 0.3 |, red arrows). 
However, an equal error in the measurement space close to the tail of the distribution, 23 m/s vs. 21 m/s 
(blue arrows), would result a LEPS value of c. 0.05 ( | 0.95 – 0.9 |, blue arrows). Hence forecast errors 
of rare events are much less penalized using LEPS. 
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4. Categorical events 

4.1 Binary (dichotomous; yes/no) forecasts 
Categorical statistics are needed to evaluate binary, yes/no, forecasts of the type of statements that an event 
will or will not happen. Typical binary forecasts are warnings against adverse weather like: 

• Rain (vs. no rain); with various rainfall thresholds 

• Snowfall; with various thresholds 

• Strong winds (vs. no strong wind); with various wind force thresholds 

• Night frost (vs. no frost) 

• Fog (vs. no fog) 

The first step to verify binary forecasts is to compile a 2*2 contingency table showing the frequency of 
“yes” and “no” forecasts and corresponding observations: 

Event observed Event observed

Event forecast
Yes No Marginal total

Event forecast
Yes No Marginal total

Yes Hit False alarm Fc Yes => Yes a b a + b

No Miss Correct rejection Fc No No c d c + d

Marginal total Obs Yes Obs No Sum total Marginal total a + c b + d a + b + c + d = n
 

There are two cases when the forecast is correct, either a “hit” or a “correct rejection” (or “correct no 
forecast”) and two cases when the forecast is incorrect, either a “false alarm” or a “miss”. The so-called 
marginal distributions of the forecasts and observations are the totals that are provided in the right columns 
and lower rows of the contingency tables, respectively. A perfect forecast system would have only hits and 
correct rejections, with the other cells being = 0. Occasionally one sees the tables transposed, i.e. forecast 
and observed cell counts reversed. The distribution above is clearly the more popular one in literature and 
should be utilized for harmony. 

The seemingly simple definition of a binary event, and the subsequent 2*2 contingency table, hides quite 
astonishing complexity. There are a number of measures to tackle this complex issue and they are defined 
here highlighting some of their properties. Most, if not all, have a long historical background but they are 
still used very commonly. One should remember that in no case is it sufficient to apply only just one single 
verification measure. 

The Bias of binary forecasts compares the frequency of forecasts (Fc Yes) to the frequency of actual 
occurences (Obs Yes) and is represented by the ratio: 

 B = ( a + b ) / ( a + c )   [ ~ Fc Yes / Obs Yes ] 

Range of  B is zero to infinity, an unbiased score = 1. With B > 1 (< 1), the forecast system exhibits over-
forecasting (under-forecasting) of the event. B is also known as Frequency Bias Index (FBI). As in the case 
of continuous variables, bias is not an accuracy measure.  

The most simple and intuitive performance measure that provides information on the accuracy of a 
categorical forecast system is Proportion Correct: 

  PC = ( a + d ) / n   [ ~ ( Hits + Correct rejections ) / Sum total ] 
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Range of PC is zero to one, a perfect score = 1. PC is usually very misleading because it rewards correct 
“yes” and “no” forecasts equally and is strongly influenced by the more common category. This is typically 
the “no event” case, i.e. not the extreme event of interest. 

The measure that examines by default the (extreme) event by measuring the proportion of observed events 
that were correctly forecast is Probability Of Detection: 

 POD = a / ( a + c )   [ ~ Hits / Obs Yes ] 

Range of POD is zero to one, a perfect score = 1. It is also called the Hit Rate (H) which should not be 
confused with PC. The complement of H (or POD) is the Miss Rate ( i.e. 1 - H or c/(a+c) ) which gives the 
relative number of missed events. POD is sensitive to hits but takes no account of false alarms. It can be 
artificially improved by producing excessive “yes” forecasts to increase the number of hits (with a 
consequence of numerous false alarms). While maximising the number of hits and minimizing the number of 
false alarms is desirable, it is required that POD be examined together with False Alarm Ratio: 

 FAR = b / ( a + b )   [ ~ False alarms / Fc Yes ]  

Range of FAR is one to zero, a perfect score = 0, i.e. FAR has a negative orientation. FAR is also very 
sensitive to the climatological frequency of the event. Contrary to POD, FAR is sensitive to false alarms but 
takes no account of misses. Likewise POD, it can be artificially improved, but now by producing excessive 
“no” forecasts, i.e. to reduce the number of false alarms. Because the increase of POD is achieved by 
increasing FAR and decrease of FAR by decreasing POD, POD and FAR must be examined together. 

While FAR above is a measure of false alarms given the forecasts (Fc Yes), another score applying the cell 
counts of false alarms, False Alarm Rate (note the difference in notation!) is a measure of false alarms 
given the event did not occur (Obs No) (also known as Probability Of False Detection, POFD), and is 
defined as: 

 F = b / ( b + d )   [ ~ False alarms / Obs No ] 

Range of F is again one to zero, a perfect score = 0, i.e. like FAR exhibiting negative orientation. F is 
generally associated with the evaluation of probabilistic forecasts by combining it with POD (or H) into the 
so-called Relative Operating Characteristic diagram or curve (ROC, see Chapter 5). However, it is 
possible to apply the ROC in a categorical binary case so that one can compare directly and consistently a 
categorical forecast (point value) with a probability forecast (curve). 

If a verification system covers computation of POD and F, a popular skill score with various “inventors” in 
the history is automatically generated: Hanssen-Kuipers Skill Score (KSS), or True Skill Statistics (TSS), 
or Peirce Skill Score (PSS), is defined (in its simplest form) as: 

 KSS = POD - F   ( = H - F ) [ ~ ( Hits / Obs Yes ) - ( False alarms / Obs No ) ] 

Range of KSS is minus one to one, a perfect score = 1, no skill forecast = 0 (i.e. POD = F). Ideally, KSS 
measures the ability of the forecast system to separate the “yes” cases (POD) from the “no” cases (F). For 
rare events, the frequency of correct rejections cell (d) is typically very high in the contingency table 
compared to the other cells, leading to a very low False Alarm Rate and, consequently, KSS is close to POD. 

A widely used performance measure of rare events, is Threat Score (TS), or Critical Success Index (CSI): 

 TS = a / ( a + b + c )  [ ~ Hits / ( Hits + False alarms + Misses ) ] 

Range of TS is zero to one, a perfect score = 1, no skill forecast = 0. TS is sensitive to hits and takes into 
account both false alarms and misses and can be seen as a measure for the event being forecast after 
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removing correct (simple) “no” forecasts from consideration. TS is sensitive to the climatological frequency 
of events (producing poorer scores for rarer events), since some hits can occur due to random chance. To 
overcome this effect, a kindred score, Equitable Threat Score (also known as Gilbert’s Skill Score, GSS) 
adjusts for the number of hits associated with random chance, and is defined as: 

 ETS = ( a - ar ) / ( a + b + c - ar ) [ ~ ( Hits - Hits random ) /  

      ( Hits + False alarms + Misses - Hits random ) ] 

where ar = ( a + b ) ( a + c ) / n   [ ~ ( Fc Yes ) * ( Obs Yes ) / Sum total ] 

is the number of hits for random forecasts. 

Range of ETS is -1/3 to one, a perfect score = 1, no skill forecast = 0. 

One of the most commonly used skill scores for summarizing the 2*2 contingency table is Heidke Skill 
Score. It’s reference accuracy measure is Proportion Correct (PC), adjusted to eliminate forecasts which 
would be correct due to random chance. Using the cell counts it can be written in the form: 

 HSS = 2 ( ad - bc ) / { ( a + c )( c + d ) + ( a + b )( b + d ) } 

Range of HSS is minus infinity to one, a perfect score = 1, no skill forecast = 0. 

Odds Ratio measures the forecasting system’s probability (odds) to score a hit (POD or H) as compared to 
the probability of making a false alarm (POFD or F): 

 OR = { H / ( 1 - H ) } / { F / ( 1 - F ) },  which using the cell counts becomes: 

 OR =  ad / bc   [ ~ ( Hits * Correct rejections ) / ( False alarms * Misses ) ] 

Range of OR is zero to infinity, a perfect score yields infinity, no skill system = 1, i.e. the ratio is greater than 
one when POD exceeds the False Alarm Rate. Odds Ratio is independent of potential biases between 
observations and forecasts because it does not depend on marginal totals of the contingency table. It can be 
transformed into a skill score, ranging from -1 to +1: 

 ORSS = ( OR – 1) / ( OR + 1 ),  and using the cell counts: 

 ORSS = ( ad - bc ) / ( ad + bc ) 

ORSS has practically never been used in meteorological forecast verification but is supposed to possess 
several attractive properties (Stephenson, 2000; [ref 10]). Because of this and simplicity of computation, it’s 
use is proposed at least for experimentation. 

4.2  Multi-category forecasts 
Categorical events are naturally not limited to binary forecasts of two categories and the associated 2*2 
contingency tables. The general distributions approach in forecast verification studies the relationship among 
the elements in multi-category contingency tables. One can consider local weather variables in several 
mutually exhaustive categories, e.g. cloudiness or accumulated rainfall in k categories (where k>2), or rain 
type classified into rain/snow/freezing rain types (k=3), and likewise for wind warnings categorized into 
strong gale/gale/no gale (k=3), etc. 
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It is advisable to initiate verification again by constructing a contingency table where the frequencies of 
forecasts and observations are collected in relevant cells as illustrated in the attached table for a 3*3 category 
case (left-hand box) (adapted from [ref 5]). A perfect forecast system would (again) have all the entries along 
the diagonal (r, v, z, in the example), all other values being = 0. Only the Proportion Correct (PC) can 
directly be generalized to situations with more than two categories. The other verification measures of 
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Chapter 4.1 are valid only with the binary yes/no forecast situation. To be able to apply these measures, one 
must convert the k>2 contingency table into a series of 2*2 tables. Each of these is constructed by 
considering the “forecast event” distinct from the complementary “non-forecast event”, which is composed 
as the union of the remaining k-1 events (right-hand sub-boxes of the table, where the same cell notation is 
used as in the previous table). The off-diagonal cells provide information about the nature of the forecast 
errors. For example, biases (B) reveal if some categories are under- or over-predicted, while PODs quantify 
the success of detecting the distinct categorical events. 

Observed

Forecast
o 1 o 2 o 3 fc Σ

f 1 r s t Σ  f 1 a = r b= s+t

f 2 u v w Σ  f 2 a = v b= u+w c= u+x d= v+w+y+z

f 3 x y z Σ  f 3 a = z b= x+y c= s+y d= r+t+x+z

obs Σ Σ  o 1 Σ  o 2 Σ  o 3 Σ c= t+w d= r+s+u+v
 

The KSS and HSS skill scores can be generalized to multi-category cases: 

 KSS =  { Σ p ( fi , oi ) - Σ p ( fi ) p ( oi ) }  /  { 1 - Σ ( p (fi) ) 2 } , 

 HSS =  { Σ p ( fi , oi ) - Σ p ( fi ) p ( oi ) }  /  { 1 - Σ p ( fi ) p ( oi )} , 

where the subscript i denotes the dimension of the table, p ( fi , oi ) represents the joint distribution of 
forecasts and observations (i.e. the diagonal sum count divided by the total sample size, the PC), and p ( fi ) 
and p ( oi ) are the marginal probability distributions of the forecasts and observations (i.e. row and column 
sums divided by the sum total), respectively. Both KSS and HSS are measures of potential improvement in 
the number of correct forecasts over random forecasts. The estimation of randomness (denominator) is the 
only difference between these two scores. For a 2*2 situation the equations reduce to the corresponding 
formulae shown in the previous chapter. 

Rain
Rain observed

forecast
Yes No fc Σ

Yes 52 45 97

No 22 227 249

obs Σ 74 272 346
 

  B   = 1.31 TS   = 0.44
  PC  = 0.81 ETS  = 0.32

~>   POD = 0.70 KSS  = 0.53
  FAR = 0.46 HSS  = 0.48
  F   = 0.17 OR  = 11.92

ORSS = 0.85
 

Example 5 - Contingency table of one year (with 19 missing cases) of categorical rain vs. no rain 
forecasts (left), and  resulting statistics (right). Rainfall is a relatively rare event at this particular 
location, occurring in only c. 20 % (74/346) of the cases. Due to this, PC is quite high at 0.81. The 
relatively high rain detection rate (0.70) is “balanced” by high number of false alarms (0.46), with 
almost every other rain forecast having been superfluous. This is also seen as biased over-forecasting of 
the event (B=1.31). Due to the scarcity of the event the false alarm rate is quite low (0.17) – if used alone 
this measure would give a very misleading picture of forecast quality. The Odds Ratio shows that it was 
12 times more probable to make a correct (rain or no rain) forecast than an incorrect one. The resulting 
skill score (0.85) is much higher than the other skill scores which is to be noted - this is a typical feature 
of the ORSS due to its definition. 
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Clouds
Clouds observed

forecast
0 - 2 3 - 5 6 - 8 fc Σ

0 - 2 65 10 21 96

3 - 5 29 17 48 94

6 - 8 18 10 128 156

obs Σ 112 37 197 346
 

 

No clouds (0-2) Partly cloudy (3-5) Cloudy (6-8)

  B   = 0.86   B   = 2.54   B   = 0.79
  POD = 0.58   POD = 0.46   POD = 0.65

~>   FAR = 0.32   FAR = 0.82   FAR = 0.18
  F   = 0.13   F   = 0.25   F   = 0.19
  TS  = 0.45   TS  = 0.15   TS  = 0.57

Overall:  PC = 0.61  KSS = 0.41  HSS = 0.37
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Example 6 - Multi-category contingency table of one year (with 19 missing cases) of cloudiness forecasts 
(left), and resulting statistics (right). Results are shown exclusively for forecasts of each cloud category, 
together with the overall PC, KSS and HSS scores. The most marked feature is the very strong over-
forecasting of the “partly cloudy” category leading to numerous false alarms (B=2.5, FAR=0.8), and, 
despite this, the poor detection (POD=0.46). The forecasts cannot reflect the observed U shaped 
distribution of cloudiness at all. Regardless of this inferiority both overall skill scores are relatively high 
(c. 0.4), following the fact that most of the cases (90 %) fall either in the “no cloud” or “cloudy” 
category - neither of these scores takes into account the relative sample probabilities, but weight all 
correct forecasts similarly.  
The lower part of the example shows the same data transformed into hit/miss bar charts, either given the 
observations (left), or given the forecasts (right). The green, yellow and red bars denote correct and one 
and two category errors, respectively. The U-shape in observations is clearly visible (left), whereas there 
is no hint of such in the forecast distribution (right). 

 

To summarize (including the general guidelines), and indicating minimum and optimum 
requirements, it is proposed to: 

• verify a comprehensive set of categorical events by compiling relevant contingency tables, 
including multi-category events, and focusing on adverse and/or extreme local weather 

• minimum proposal:  compute B, PC, POD, FAR, F, KSS, TS, ETS, HSS 

• optimum proposal:  compute OR, ORSS, ROC 

 

5. Probability forecasts 
All forecasting involves some level of uncertainty. However, deterministic forecasts and their verification in 
Chapters 3 and 4 do not address the inherent uncertainty of the weather parameter or event under 
consideration. Probabilistic forecasts, given probabilities of the expected event with values between 0 % and 
100 % (or 0 and 1) much better take into account the underlying joint distribution between forecasts and 
observations. One should remember that a conversion of probability forecasts to categorical events is 
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possible and simple by just defining the “on/off” probability threshold. However, reverse is not 
straightforward. Verification of probability forecasts is, on the other hand, somewhat more laborious, not 
only because large datasets are required to obtain any significant information. 

Probability forecasts can be produced with different methods just like categorical forecasts. We may have 
subjective probability forecasts to end users issued by forecasters (EP prob), or statistically post-processed 
probability forecasts (PPP prob), or forecasts generated from a set of deterministic numerical forecast like 
the ECMWF Ensemble Prediction System (EPS). Therefore, by using a similar notation as earlier in Chapter 
2, it is possible and desirable to provide comparisons of the form: 

 EPS  vs.  PPP prob  vs.  EP prob 

A common first look at the behaviour of a probabilistic forecast system is to construct a reliability diagram 
(see Example 7, left). It represents an informative graphical plot of the observed relative frequency of an 
event as a function of it’s forecast probability in definite probability categories (e.g. in 10% intervals). The 
resulting reliability curve is thus an indication of the agreement between mean forecast probability and mean 
observed frequency. Perfect reliability is reached when all forecast probabilities and corresponding observed 
relative frequencies are the same, aligned along the diagonal 45 degree line. The reliability diagram should 
include a summary distribution of the frequency of the use of each definite forecast probability category, 
which will depict the sharpness of the system. It indicates the capability of the system to forecast extreme 
values, or values close to 0 or 1. As with probability forecasts in general, the reliability diagram requires a 
large number of observation-forecast pairs to yield a meaningful diagram. A more comprehensive form of 
the reliability diagram is the so-called attributes diagram (see, [web 8]). 

The most common measure of the quality of probability forecasts is the Brier Score (BS). It measures the 
mean squared difference between forecasts and observations in probability space and is the equivalent of 
MSE of categorical forecasts. Likewise, it is negatively oriented, with perfect forecasts having BS = 0. 

 BS = ( 1/n )  Σ ( pi - oi ) 2 , 

where index i denotes the numbering of observation-forecast pairs, pi are the forecast probabilities of the 
given event and oi the corresponding observed values, having integer values 1 or 0, if the event occurred or 
did not, respectively. Analogous to earlier definitions, it is customary to generate a skill score, where a 
reference forecast system is required: 

 BS ref = ( 1/n )  Σ ( refi - oi ) 2 , 

where refi is usually the relevant climatological relative frequency of the event. 

The resulting Brier Skill Score is: 

 BSS = 1 - BS / BS ref . 

The Brier Score can be algebraically decomposed into three quantities known as reliability, resolution and 
uncertainty. They are not elaborated here but, rather, reference is made to the User Guide to ECMWF 
Forecast Products ([ref 11], [web 9]) with illustrative examples. 

A vector generalization of the Brier (Skill) Score to multi-event or multi-category situations is defined by the 
Ranked Probability Score (RPS) and the respective skill score. It measures the sums of squared differences 
in cumulative probability space for a multi-event probability forecast. It penalizes forecasts more severely 
when their probabilities are further from the actual observed distributions. 

 RPS = ( 1/(k-1))  Σ { ( Σ pi ) - ( Σ oi ) } 2 , 
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where k is the number of probability categories. Consequently: 

 RPSS = 1 - RPS / RPS ref 

Both BSS and RPSS are very sensitive to dataset size. 

Signal Detection Theory (SDT) has brought to meteorology a method to assess the performance of a 
forecasting system that distinguishes between the discrimination capability and the decision threshold of the 
system, namely the Relative Operating Characteristic (ROC). This has attained wider and wider 
popularity in meteorological forecast verification during recent years. The ROC curve is a graphical 
representation in a square box of the Hit rate (H) (y-axis) against the False Alarm Rate (F) (x-axis) for 
different potential decision thresholds (see Example 7, right). H, rather than POD notation is used here to be 
consistent with the recent textbook in verification ([ref 6]). Graphically, ROC curve is plotted from a set of 
probability forecasts by stepping (or sliding) a decision threshold (e.g. with 10% probability intervals) 
through the forecasts, each probability decision threshold generating a 2*2 contingency table. Hence the 
probability forecast is transformed into a set of categorical “yes/no” forecasts. A set of value pairs of H and F 
is then obtained, forming the curve (For an explicit demonstration, see [ref 7, Chapter 4.1]). It is desirable 
that H be high and F be low. On the graph, the closer the point is to the upper left-hand corner, the better the 
forecast. Since a perfect forecast system would have only correct forecasts with no false alarms, regardless of 
the threshold chosen, a perfect system is represented by a ROC “curve” that rises from (0,0) (H=F=0) along 
the y-axis to (0,1) (upper left-hand corner; H=1, F=0) and then straight to (1,1) (H=F=1). 

An attractive, relative index and widely used summary measure based on the diagram is the ROC area 
(ROCA), the area remaining under the curve, and an area-based skill score (ROC_SS) derived from it. In a 
perfect forecast system ROCA would be =1. It decreases from one as the curve moves downward from the 
ideal top-left corner of the box. A useless, zero-skill, forecast system is represented as a straight line along 
the diagonal, when H=F and the area is = 0.5. Such a system cannot discriminate between occurences and 
non-occurences of the event. The ROCA based skill score can simply be defined as: 

 ROC_SS = 2 * ROCA  - 1 

Below the diagonal ROC_SS has negative values, reaching a minimum of - 1, when ROCA equals = 0. It can 
be shown that for a deterministic forecast, ROC_SS translates into H - F, i.e. KSS. 

As mentioned earlier in Chapter 4.1, ROC can be adapted for a categorical binary event. In that special case 
there is only one single decision threshold and, instead of a curve, only a single point results. An advantage 
of measures such as ROC, ROCA and ROC_SS is that they are directly related to a decision-theoretic 
approach and can thus be related to the economic value of probability forecasts for end users, and possibly 
allowing for the assessment of the costs of false alarms (see, Chapter 6). 

To summarize (including the general guidelines), and indicating minimum and optimum 
requirements, it is proposed to: 

• verify a comprehensive set of probability forecasts focusing on adverse and/or extreme local 
weather 

• minimum proposal:  produce reliability diagrams, including sharpness distribution 

• minimum proposal:  compute BS, BSS 

• optimum proposal:  produce attributes diagrams and ROC diagrams 

• optimum proposal:  decompose BS, compute RPS, RPSS, ROCA , ROC_SS 
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Example 7 - Reliability (left) and ROC (right) diagrams of one year of PoP (Probability of Precipitation) 
forecasts. The data are the same as in Example 5, where the PoPs were transformed into categorical 
yes/no forecasts by using 50 % as the “on/off” threshold.  The inset box in the reliability diagram shows 
the frequency of use of the various forecast probabilities and the horizontal dotted line the climatological 
event probability (cf. Example 5). The reliability curve (with open circles) indicates strong over-
forecasting bias throughout the probability range. This seems to be a common feature at this particular 
location as indicated by the qualitatively similar 10-year average reliability curve (dashed line). Brier 
skill scores (BSS) are computed against two reference forecast systems. Of these, climatology appears to 
be a much stronger “no skill opponent” than persistence. The ROC curve (right) is constructed on the 
basis of forecast and observed probabilities leading to different potential decision thresholds and 
respective value pairs of H and F, as described in the text. Also ROCA and ROC_SS values are shown. 
The black dot represents the single value ROC from the categorical binary case of Example 5 (H=0.7; 
F=0.17). 

6. Relating forecast verification to forecast value and forecast 
user’s decision making 

Verification measures are intended and expected to reveal the quality of forecasts. However, a successful 
forecast does not necessarily have any value to its final user, whereas a misleading forecast may possibly 
provide lots of valuable and/or useful information to another user. A forecast can be considered to exhibit 
value if it helps the end user to make decisions on the basis of that particular forecast, regardless of its skill. 
For example, forecasts of gale force winds may be (and quite often are) biased toward over-forecasting, 
resulting scores with low skill. Still, they may be of value to a user whose actions are economically very 
sensitive to strong winds. 

It is highly recommended to associate with a local verification scheme features that help to evaluate the 
potential economic value of the forecasts. This is especially important in an effort to strengthen the 
dialogue and collaboration with customers and end users. It is quite natural that a customer would want to get 
some feedback on the potential economical implications of forecast information. However, the key element 
in this chain is the customer himself. The end forecast producer, the meteorologist, cannot have solid  
knowledge of the economic implications or risks of particular weather events, and even less so can the 
developer or producer of the background NWP guidance (like ECMWF). 

Consider a decision maker who is sensitive to certain adverse weather events, for example gale force winds 
during a sailing event in a lake area, or occurrence of icing on a certain road network. The decision maker 
can then make judgements on taking some actions to prevent potential losses due to expected adverse 
weather. These actions would incur costs of an amount, say C. However, if actions were not taken and the 
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event would occur, the losses would amount to, say L. With no actions taken and no event present, the costs 
and losses would be nil. The example leads to the descriptive table (left-hand box) below. 

                 Event occurs Event observed

Action taken
Yes No <~> Event forecast

Yes No Marginal total

Yes C C Yes a b a + b

No L 0 No c d c + d

Marginal total a + c b + d a + b + c + d = n
 

If the end user had no forecast information available but, nevertheless, would know the climatological 
probability, pclim, of that particular adverse weather event, he could base his decision making on the 
climatology and consider protective actions as follows: action is recommended if  pclim * L is larger than the 
cost of protection C, i.e.: 

 if pclim  >  C / L <=>  action is recommended 

 if pclim  <  C / L <=>  action is not recommended 

The climatological probability of the event provides a baseline or a breaking point for the decision making. 
The fundamental question here is that the user should know his Cost / Loss ratio (C/L) upon which to 
establish the final decision. This, unfortunately, is quite seldom the case. 

A value index (V) of a forecast system can be defined in a similar manner as the general form of the skill 
score (for more details, see [ref 6, Chapter 8] and [ref 12]): 

 V = ( Eref - Efc ) / ( Eref - Eperf ) , 

where Eref refers to the expenses of using a reference forecast like climatology or persistence, Efc to the 
expenses of the forecast system under evaluation, and Eperf to expenses of a perfect forecast system. V has the 
value = 1 for a perfect system and equals = 0 when the forecast system has the same value as the reference 
(like the skill score). By linking the cell count notation of the above table’s right-hand side with the left-hand 
side theoretical costs and losses, and considering a situation there were no guidance whatsoever available, 
i.e. Eref were defined to take protective action (incurring costs C) in every  case (n), we would have: 

 Eref = nC 

 Efc  = aC + bC + cL + d0 

 Eperf = (a+c) C 

The value index would then result in: 

 V = { ( c + d ) - (( c / (C/L)) } / ( b + d ) 

Such an index would be easy to compute for whatever 2*2 situation, provided again, that the user-defined 
cost/loss ratio is known. Index V varies typically between zero and one and is highly dependent on C/L.  

The cost/loss considerations provide a link between the end users’ forecast value and standard verification 
measures. It was mentioned in the previous chapter that for a deterministic forecast, the ROC-based skill 
score ROC_SS translates to the KSS (= H - F ). It can also be shown ([ref 6, Chapter 8]) that the KSS 
produces the maximum attainable value index (Vmax = H - F ). This would indicate that the maximum 
economic value is closely related to forecast skill and that skill scores ROC_SS and KSS can be related to, 
and interpreted as, measures of potential forecast value in addition to forecast quality. The economic value 
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and cost/loss discussion can be extended to probabilistic forecasts. The verification web pages of ECMWF 
([web 8]) provide more insight into this area. The MSs are encouraged to apply such methodology, and what 
is introduced here, in their local applications in support to what is being done at ECMWF. 

To summarize (including the general guidelines), and indicating minimum and optimum 
requirements, it is proposed to: 

• minimum proposal:  initiate economic value and Cost/Loss experimentation studies “inhouse” and 
with local forecast end users 

• optimum proposal:  elaborate comprehensive studies linking actual verification results (covering 
e.g. KSS and/or ROC_SS) with true C/L figures, including computation of value index V 

7. Other issues 
In addition to what has been presented heretofore, the MSs are welcome to implement and report upon any 
verification related issues. The previous text has covered mostly objective verification methods. It is stated 
in the annual request letter to MSs to report also on local subjective verification methods and results. Such 
activities are warmly encouraged. These are usually visual, so-called “eyeball”, verifications by utilizing 
some kind of classification or scoring schemes. Since this has been a continuing practice for a long time in 
some MSs, it’s continuation is essential to extend trend evaluation to the foreseeable future. 

Another area where objective or statistical verification measures may not necessarily be applicable is case 
studies, object- or event-oriented investigations of limited time and/or spatial coverage. Such studies are 
occasionally reported in the “Green Book” and can provide to ECMWF and other MSs alike valuable and 
detailed information on local model behaviour. 

Final word: Weather forecast verification is a multi-faceted act (read “art”) of numerous methods and 
measures. Their implementation and inclusion into everyday real-time practice, seamlessly attached to the 
operational forecasting environment is one fundamental way to improve weather forecasts and services. 
Active feedback and reporting of related activities and innovations will serve the whole meteorological 
community. 
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 - NOAA/SEC Glossary of verification terms 
 
[web 5] http://isl715.nws.noaa.gov/tdl/verif 
 - NOAA MOS verification website 
 
[web 6] http://wwwt.emc.ncep.noaa.gov/gmb/ens/verif.html 
 - NOAA EPS Verification website 
 
[web 7] http://www.wmo.ch/web/www/DPS/SVS-for-LRF.html 
 - WMO/CBS Standardised Verification System for Long-Range Forecasts 
 
[web 8] http://www.ecmwf.int/products/forecasts/d/charts/verification/eps 
 - Verification of ECMWF Ensemble Prediction System 
 
[web 9] http://www.ecmwf.int/products/forecasts/guide 
 User Guide to ECMWF Forecast Products 
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